Scipy讲义¶
学习使用Python处理数值、科学和数据的一个文档¶
关于Python科学计算生态系统的教程:快速介绍核心工具和技术。每个不同的章节对应一个1到2小时的课程,专业水平从初学者到专家逐渐提高。
- 1. Python科学计算入门
- 1.1. Python scientific computing ecosystem
- 1.2. The Python language
- 1.3. NumPy: creating and manipulating numerical data
- 1.4. Matplotlib:画图
- 1.5. Scipy : high-level scientific computing
- 1.5.1. 文件输入/输出:
scipy.io
- 1.5.2. 特殊函数:
scipy.special
- 1.5.3. 线性代数运算:
scipy.linalg
- 1.5.4. 快速傅立叶变换:
scipy.fftpack
- 1.5.5. 优化和拟合:
scipy.optimize
- 1.5.6. 统计和随机数:
scipy.stats
- 1.5.7. 插值:
scipy.interpolate
- 1.5.8. 数值积分:
scipy.integrate
- 1.5.9. 信号处理:
scipy.signal
- 1.5.10. 图像处理:
scipy.ndimage
- 1.5.11. 科学计算汇总练习
- 1.5.1. 文件输入/输出:
- 1.6. 获取帮助和查找文档
- 2. Advanced topics
- 2.1. Python的高级结构
- 2.2. 高级NumPy
- 2.3. Debugging code
- 2.4. Optimizing code
- 2.5. Sparse Matrices in SciPy
- 2.5.1. Introduction
- 2.5.2. Storage Schemes
- 2.5.2.1. Common Methods
- 2.5.2.2. Sparse Matrix Classes
- 2.5.2.3. Summary
- 2.5.3. Linear System Solvers
- 2.5.4. Other Interesting Packages
- 2.6. Image manipulation and processing using Numpy and Scipy
- 2.7. Mathematical optimization: finding minima of functions
- 2.7.1. Knowing your problem
- 2.7.2. A review of the different optimizers
- 2.7.3. Practical guide to optimization with scipy
- 2.7.4. Special case: non-linear least-squares
- 2.7.5. Optimization with constraints
- 2.8. Interfacing with C
- 3. Packages and applications
- 3.1. Statistics in Python
- 3.2. Sympy : Symbolic Mathematics in Python
- 3.3. Scikit-image: image processing
- 3.4. Traits: building interactive dialogs
- 3.5. 3D plotting with Mayavi
- 3.6. scikit-learn: machine learning in Python
- 3.6.1. Loading an example dataset
- 3.6.2. Classification
- 3.6.3. Clustering: grouping observations together
- 3.6.4. Dimension Reduction with Principal Component Analysis
- 3.6.5. Putting it all together: face recognition
- 3.6.6. Linear model: from regression to sparsity
- 3.6.7. Model selection: choosing estimators and their parameters